Publications

Google Scholar: https://scholar.google.com/citations?user=RxpZqqgAAAAJ&hl=en

2025

97. Heterogeneous catalyst design by generative models
Yang, C., Zhu, J., Wang, L., & Ou, P.
Invited Pespective, J. Mater. Inf. 5, 46 (2025). https://doi.org/10.20517/jmi.2025.38

96. Design of bifunctional oxygen evolution/reduction electrocatalysts on g-C3N3 monolayer by a defect physics method

Zhang, J., Liu, Y., Yang, C., Qu, Y., Zhang, A., Feng, Z., Wang, W., & Ou, P.
J. Catal. 447, 116135 (2025). https://doi.org/10.1016/j.jcat.2025.116135

95. Electrosynthesis of CO from an electrically pH-shifted DAC post-capture liquid using a catalyst:support amide linkage
Zhou, B., Liu, H., Su, G., Shin, H., Li, X.-Y., Ze, H., Liang, Y., Peng, B., Ni, W., Chen, Y., Zhu, W., Yu, C., Chen, Y., Ou, P., Xie, K., & Sargent, E. H.
Joule 9, 1264–1276 (2025). https://doi.org/10.1016/j.joule.2025.101883

94. B-Site-metal-mediated coke-resistant CO2 electrolysis on perovskite surfaces
Wang, T., Mao, Y., Ou, P., Wang, Z., Li, Y., Li, H., Pan, B., Lv, X., Li, Y., Zheng, G., Guan, C., Cui, Y., Wang, Z., & Wang, Y.
Adv. Sci. 12, e03970 (2025). https://doi.org/10.1002/advs.202503970

93. A redox-active polymeric network facilitates electrified reactive-capture electrosynthesis to multi-carbon products from dilute CO2-containing streams
Zhang, J., Cao, Y., Ou, P., Lee, G., Zhao, Y., Liu, S., Shirzadi, E., Dorakhan, R., Xie, K., Tian, C., Chen, Y., Li, X.-Y., Xiao, Y. C., Zeraati, A. S., Miao, R. K., Park, S., O’Brien, C. P., Ge, J., Zhou, X., Sinton, D., & Sargent, E. H.
Nat. Commun. 16, 3553 (2025). https://doi.org/10.1038/s41467-025-58756-9

92. Pd/Ni(OH)2 derived catalysts for selective electrosynthesis of ethylamine
Lai, W., Wang, B., Liu, Y., Mi, Z., Wu, B., Johannessen, B., Leow, W. R., Ou, P., & Lum, Y.
ChemCatChem 17, e202500117 (2025). https://doi.org/10.1002/cctc.202500117

91. Octahedral Co2+–O–Co3+ in mixed cobalt spinel promotes active and stable acidic oxygen evolution
Zhou, D., Yu, J., Tang, J., Li, X.-Y., & Ou, P.
Adv. Energy Mater. 15, 2404007 (2025). https://doi.org/10.1002/aenm.202404007

90. Electrified synthesis of n-propanol using a dilute alloy catalyst
Chen, Y., Wang, X., Li, X.-Y., Miao, R. K., Dong, J., Zhao, Z., Liu, C., Huang, J. E., Wu, J., Chu, S., Ni, W., Guo, Z., Xu, Y., Ou, P., Xu, B., Hou, Y., Sinton, D., & Sargent, E. H.
Nat. Catal. 8, 239–247 (2025). https://doi.org/10.1038/s41929-025-01301-0

89. Mn0.75Ru0.25O2 with low Ru concentration for active and durable acidic oxygen evolution
Zhou, D., Chang, Y., Tang, J., & Ou, P.
Small 21, 2412265 (2025). https://doi.org/10.1002/smll.202412265

88. Surface-hydrogenated CrMnOx coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene
Wang, Z., Ye, H., Li, Y., Sheng, B., Wang, P., Ou, P., Li, X.-Y., Yu, T., Huang, Z., Li, J., Yu, Y., Wang, X., Huang, Z., & Zhou, B.
Nat. Commun. 16, 1002 (2025). https://doi.org/10.1038/s41467-025-56277-z

87. Hierarchically porous carbon supports enable efficient syngas production in electrified reactive capture
Liu, H., Shin, H., Li, X.-Y., Su, G., Ou, P., Wang, Y., Chen, L., Yu, J., Chen, Y., Xia, R., Lee, G., Lee, K.-S., Yu, C., Wang, P., Choi, D., Zhou, D., Tian, C., Gereige, I., Alahmed, A., Jamal, A., Farha, O. K., Boettcher, S. W., Dunn, J. B., Xie, K., & Sargent, E. H.
Energy Environ. Sci. 18, 6628-6640 (2025). https://doi.org/10.1039/D5EE00094G

86. Machine-learning enables nitrogen reduction reaction on transition metal doped C3B by controlling the charge states
Yang, C., Yang, C., Liang, Y., Yan, H., Zhang, A., Ge, G., Wang, W., & Ou, P.
Mater. Chem. Front. 9, 1681–1689 (2025). https://doi.org/10.1039/D5QM00140D

85. Defect engineering in two-dimensional materials for photocatalysis: A mini-review of first-principles design
Chen, Y., Li, X.-Y., & Ou, P.
Front. Energy 19, 59–68 (2025). https://doi.org/10.1007/s11708-024-0961-5

2024

84. Ruthenium-substituted polyoxoanion serves as redox shuttle and intermediate stabilizer in selective electrooxidation of ethylene to ethylene glycol
Yu, J., Musgrave, C. B. III, Chen, Q., Yang, Y., Tian, C., Hu, X., Miao, R. K., Ou, P., Wang, S., Ni, W., Wicks, J., Zhang, J., Sinton, D., & Sargent, E. H.
J. Am. Chem. Soc. 146, 32660–32669 (2024). https://doi.org/10.1021/jacs.4c11891

83. High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis
Chang, Y., Benlolo, I., Bai, Y., Reimer, C., Zhou, D., Zhang, H., Ou, P., Ozden, A., Wicks, J., O’Brien, F. W., Sinton, D., & Sargent, E. H.
Matter 7, 4099–4113 (2024). https://doi.org/10.1016/j.matt.2024.09.013

82. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation
Liang, Y., Li, F., Miao, R. K., Hu, S., Ni, W., Zhang, S., Liu, Y., Bai, Y., Wan, H., Ou, P., Li, X.-Y., Wang, N., Park, S., Li, F., Zeng, J., Sinton, D., & Sargent, E. H.
Nat. Synth. 3, 1104–1112 (2024). https://doi.org/10.1038/s44160-024-00568-8

81. High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis
Chang, Y., Benlolo, I., Bai, Y., Reimer, C., Zhou, D., Zhang, H., Matsumura, H., Choubisa, H., Li, X.-Y., Chen, W., Ou, P., Tamblyn, I., & Sargent, E. H.
Matter 7, 4099–4113 (2024). https://doi.org/10.1016/j.matt.2024.10.001

80. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis
Chen, Y., Li, X.-Y., Chen, Z., Ozden, A., Huang, J. E., Ou, P., Dong, J., Zhang, J., Tian, C., Lee, B.-H., Wang, X., Liu, S., Qu, Q., Wang, S., Xu, Y., Miao, R. K., Zhao, Y., Liu, Y., Qiu, C., Abed, J., Liu, H., Shin, H., Wang, D., Li, Y., Sinton, D., & Sargent, E. H.
Nat. Nanotechnol.
19, 311–318 (2024). https://doi.org/10.1038/s41565-023-01543-8

79. Site-selective protonation enables efficient carbon monoxide electroreduction to acetate
Wang, X., Chen, Y., Li, F., Miao, R. K., Huang, J. E., Zhao, Z., Li, X.-Y., Dorakhan, R., Chu, S., Wu, J., Zheng, S., Ni, W., Kim, D., Park, S., Liang, Y., Ozden, A., Ou, P., Hou, Y., Sinton, D., & Sargent, E. H.
Nat. Commun. 15, 616 (2024). https://doi.org/10.1038/s41467-024-44727-z

78. High-throughput screening of single-atom catalysts confined in monolayer black phosphorus for efficient nitrogen reduction reaction
Li, X.-Y., Duan, M., & Ou, P.
Nano Res.
17, 2360–2367 (2024). https://doi.org/10.1007/s12274-023-6068-1

77. Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions
Chen, Z. W., Li, J., Ou, P., Huang, J. E., Wen, Z., Chen, L., Yao, X., Cai, G., Yang, C. C., Singh, C. V., & Jiang, Q.
Nat. Commun. 15, 359 (2024). https://doi.org/10.1038/s41467-023-44261-4

76. Reduction of 5-Hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan at high current density using a Ga-doped AgCu: Cationomer hybrid electrocatalyst
Tian, C., Yu, J., Zhou, D., Ze, H., Liu, H., Chen, Y., Xia, R., Ou, P., Ni, W., Xie, K., & Sargent, E. H.
Adv. Mater.
36, e2312778 (2024). https://doi.org/10.1002/adma.202312778

75. Selective electrified propylene-to-propylene glycol oxidation on activated Rh-doped Pd
Huang, J. E., Chen, Y., Ou, P., Ding, X., Yan, Y., Dorakhan, R., Lum, Y., Li, X.-Y., Bai, Y., Wu, C., Fan, M., Lee, M. G., Miao, R. K., Liu, Y., O’Brien, C., Zhang, J., Tian, C., Liang, Y., Xu, Y., Luo, M., Sinton, D., & Sargent, E. H.
J. Am. Chem. Soc. 146, 8641–8649 (2024). https://doi.org/10.1021/jacs.4c00312

74. Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity
Shirzadi, E., Jin, Q., Zeraati, A. S., Dorakhan, R., Goncalves, T. J., Abed, J., Lee, B.-H., Rasouli, A. S., Wicks, J., Zhang, J., Ou, P., Boureau, V., Park, S., Ni, W., Lee, G., Tian, C., Meira, D. M., Sinton, D., Siahrostami, S., & Sargent, E. H.
Nat. Commun. 15, 2995 (2024). https://www.nature.com/articles/s41467-024-47319-z

73. Adaptive catalyst discovery using multicriteria Bayesian optimization with representation learning
Chen, J., Ou, P., Chang, Y., Zhang, H., Li, X.-Y., Sargent, E. H., & Chen, W.
arXiv preprint arXiv:2404.12445 (2024). https://arxiv.org/abs/2404.12445

72. Bimetallic metal sites in metal–organic frameworks facilitate the production of 1-butene from electrosynthesized ethylene
Ozden, A., Wicks, J., Ou, P., Wang, S., Dorakhan, R., Park, S., Bhatt, P. M., Kale, V. S., Sinton, D., Eddaoudi, M., & Sargent, E. H.
J. Am. Chem. Soc. 146, 14267–14277 (2024). https://doi.org/10.1021/jacs.4c03806

2023

71. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions
Lee, M. G., Li, X.-Y., Ozden, A., Wicks, J., Ou, P., Li, Y., Dorakhan, R., Lee, J., Park, H. K., Yang, J. W., Chen, B., Abed, J., dos Reis, R., Lee, G., Huang, J. E., Peng, T., Chin, Y.-H. C., Sinton, D., & Sargent, E. H.
Nat. Catal. 6, 310–318 (2023). https://doi.org/10.1038/s41929-023-00924-5

70. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction
‍Jin, J., Wicks, J., Min, Q., Li, J., Hu, Y., Ma, J., Wang, Y., Jiang, Z., Xu, Y., Lu, R., Si, G., Papangelakis, P., Shakouri, M., Xiao, Q., Ou, P., Wang, X., Chen, Z., Zhang, W., Yu, K., Song, J., Jiang, X., Qiu, P., Lou, Y., Wu, D., Mao, Y., Ozden, A., Wang, C., Xia, B. Y., Hu, X., Dravid, V. P., Yiu, Y.-M., Sham, T.-K., Wang, Z., Sinton, D., Mai, L., Sargent, E. H., & Pang, Y.
‍Nature 617, 724–729 (2023). https://doi.org/10.1038/s41586-023-05918-8

69. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment
Zhao, Y., Hao, L., Ozden, A., Liu, S., Miao, R. K., Ou, P., Alkayyali, T., Zhang, S., Ning, J., Liang, Y., Xu, Y., Fan, M., Chen, Y., Huang, J. E., Xie, K., Zhang, J., O’Brien, F. W., Sargent, E. H., & Sinton, D.
Nat. Synth. 2, 403–412 (2023). https://doi.org/10.1038/s44160-022-00234-x

68. Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity
Shirzadi, E., Jin, Q., Zeraati, A. S., Dorakhan, R., Goncalves, T. J., Abed, J., Lee, B.-H., Rasouli, A. S., Wicks, J., Zhang, J., Ou, P., Boureau, V., Park, S., Ni, W., Lee, G., Tian, C., Meira, D. M., Sinton, D., Siahrostami, S., & Sargent, E. H.
Nat. Commun. 14, 3787 (2023). https://doi.org/10.1038/s41467-023-38935-2

67. Pressure dependence in aqueous-based electrochemical CO2 reduction
Huang, L., Gao, G., Yang, C., Li, X.-Y., Miao, R. K., Xue, Y., Xie, K., Ou, P., Yavuz, C. T., Han, Y., Magnotti, G., Sinton, D., Sargent, E. H., & Lu, X.
Nat. Commun. 14, 2958 (2023). https://doi.org/10.1038/s41467-023-37898-8

66. Basal plane activation of two-dimensional transition metal dichalcogenides via alloying for the hydrogen evolution reaction: first-principles calculations and machine learning prediction
Chen, Y., Zhao, Y., Ou, P., & Song, J.
Nano Res. 17, 2360–2367 (2024). https://doi.org/10.1007/s12274-023-5513-5

65. Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption
Ozden, A., Li, J., Kandambeth, S., Li, X.-Y., Liu, S., Shekhah, O., Ou, P., Finfrock, Y. Z., Wang, Y.-K., Alkayyali, T., Arquer, F. P., Kale, V. S., Bhatt, P. M., Ip, A. H., Eddaoudi, M., Sargent, E. H., & Sinton, D.
Nat. Energy 8, 179–190 (2023). https://doi.org/10.1038/s41560-022-01188-2

64. Pressure dependence in aqueous-based electrochemical CO2 reduction
Huang, L., Gao, G., Yang, C., Li, X.-Y., Miao, R. K., Xue, Y., Xie, K., Ou, P., Yavuz, C. T., Han, Y., Magnotti, G., Sinton, D., Sargent, E. H., & Lu, X.
Nat. Commun. 14, 2958 (2023). https://doi.org/10.1038/s41467-023-38775-0

‍63. Strong-proton-adsorption Co-based electrocatalysts achieve active and stable neutral seawater splitting
‍Wang, N., Ou, P., Hung, S.-F., Huang, J. E., Ozden, A., Abed, J., Grigioni, I., Chen, C., Miao, R. K., Yan, Y., Zhang, J., Wang, Z., Dorakhan, R., Badreldin, A., Abdel-Wahab, A., Sinton, D., Liu, Y., Liang, H., & Sargent, E. H.
‍Adv. Mater. 35, 2210057 (2023). https://doi.org/10.1002/adma.202210057

62. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment
Zhao, Y., Hao, L., Ozden, A., Liu, S., Miao, R. K., Ou, P., Alkayyali, T., Zhang, S., Ning, J., Liang, Y., Xu, Y., Fan, M., Chen, Y., Huang, J. E., Xie, K., Zhang, J., O’Brien, F. W., Sargent, E. H., & Sinton, D.
Nat. Synth. 2, 403–412 (2023). https://doi.org/10.1038/s44160-022-00234-x

61. An ultrasensitive FET biosensor based on vertically aligned MoS2 nanolayers with abundant surface active sites
‍Song, P., Ou, P., Wang, Y., Yuan, H., Duan, S., Chen, L., Fu, H., Song, J., & Liu, X.
‍Anal. Chim. Acta 1252, 341036 (2023). https://doi.org/10.1016/j.aca.2023.341036

60. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis
‍Fan, M., Huang, J. E., Miao, R. K., Mao, Y., Ou, P., Li, F., Li, X.-Y., Cao, Y., Zhang, Z., Zhang, J., Yan, Y., Ozden, A., Ni, W., Wang, Y., Zhao, Y., Chen, Z., Khatir, B., O’Brien, C. P., Xu, Y., Xiao, Y. C., Waterhouse, G. I. N., Golovin, K., Wang, Z., Sargent, E. H., & Sinton, D.
‍Nat. Catal. 6, 763–772 (2023). https://doi.org/10.1038/s41929-023-00977-y

59. Paired electrosynthesis of H2 and acetic acid at A/cm2 current densities
Tian, C., Li, X.-Y., Nelson, V. E., Ou, P., Zhou, D., Chen, Y., Zhang, J., Huang, J. E., Wang, N., Yu, J., Liu, H., Liu, C., Yang, Y., Peng, T., Zhao, Y., Lee, B.-H., Wang, S., Shirzadi, E., Chen, Z., Miao, R. K., Sinton, D., & Sargent, E. H.
ACS Energy Lett. 8, 4096–4103 (2023). https://doi.org/10.1021/acsenergylett.3c01626

58. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts
‍Luo, Y., Xie, K., Ou, P., Lavallais, C., Peng, T., Chen, Z., Zhang, Z., Wang, N., Li, X.-Y., Grigioni, I., Liu, B., Sinton, D., Dunn, J. B., & Sargent, E. H.
‍Nat. Catal. 6, 939–948 (2023). https://doi.org/10.1038/s41929-023-01029-3

‍57. Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires
Zhou, B., Ma, Y., Ou, P., Ye, Z., Li, X.-Y., Vanka, S., Ma, T., Sun, H., Wang, P., Zhou, P., Cooper, J. K., Xiao, Y., Navid, I. A., Pan, J., Song, J., & Mi, Z.
Nat. Catal. 6, 987–995 (2023). https://doi.org/10.1038/s41929-023-01026-6

56. Basal plane activation via grain boundaries in monolayer MoS2 for carbon dioxide reduction
‍Zhao, Y., Chen, Y., Ou, P., & Song, J.
‍ACS Catal. 13, 12941–12951 (2023). https://doi.org/10.1021/acscatal.3c03113

55. Epoxy-rich Fe single atom sites boost oxygen reduction electrocatalysis
‍Zhao, Y., Shen, Z., Huo, J., Cao, X., Ou, P., Qu, J., Nie, X., Zhang, J., Wu, M., Wang, G., & Liu, H.
Angew. Chem. Int. Ed. 62, e202308349 (2023). https://doi.org/10.1002/anie.202308349

54. Electrified cement production via anion-mediated electrochemical calcium extraction
‍Miao, R. K., Wang, N., Hung, S.-F., Huang, W.-Y., Zhang, J., Zhao, Y., Ou, P., Wang, S., Edwards, J. P., Tian, C., Han, J., Xu, Y., Fan, M., Huang, J. E., Xiao, Y. C., Ip, A. H., Liang, Y., Sargent, E. H., & Sinton, D.
ACS Energy Lett. 8, 4694–4701 (2023). https://doi.org/10.1021/acsenergylett.3c01668

53. Two-dimensional III-nitride alloys: electronic and chemical properties of monolayer Ga(1–x)AlxN
Chen, Y., Zhao, Y., Ou, P., & Song, J.
Phys. Chem. Chem. Phys. 25, 32549–32556 (2023). https://doi.org/10.1039/D3CP03291D‍

2022

52. Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering
Chu, S., Ou, P., Rashid, R. T., Pan, Y., Liang, D., Zhang, H., & Song, J.
Green Energy Environ. 7, 545–553 (2022). https://doi.org/10.1016/j.gee.2020.08.009

51. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst
Wang, X., Ou, P., Ozden, A., Hung, S.-F., Tam, J., Gabardo, C. M., Howe, J. Y., Sisler, J., Bertens, K., Arquer, F. P., Miao, R. K., O’Brien, C. P., Wang, Z., Abed, J. A., Rasouli, S., Sun, M., Ip, A. H., Sinton, D., & Sargent, E. H.
Nat. Energy 7, 170–176 (2022). https://doi.org/10.1038/s41560-021-00967-7

50. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water
Li, Y., Ozden, A., Leow, W. R., Ou, P., Huang, J. E., Wang, Y., Bertens, K., Xu, Y., Liu, Y., Roy, C., Jiang, H., Sinton, D., Li, C., & Sargent, E. H.
Nat. Catal. 5, 185–192 (2022). https://doi.org/10.1038/s41929-022-00749-8

49. Single-walled black phosphorus nanotube as a NO2 gas sensor
Ou, P., Zhou, X., Li, X.-Y., Chen, Y., Chen, C., Meng, F., & Song, J.
Mater. Today Commun. 31, 103434 (2022). https://doi.org/10.1016/j.mtcomm.2022.103434

48. Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles
Yang, B., Liu, K., Li, H., Liu, C., Fu, J., Li, H., Huang, J. E., Ou, P., Alkayyali, T., Cai, C., Duan, Y., Liu, H., An, P., Zhang, N., Li, W., Qiu, X., Jia, C., Hu, J., Chai, L., Lin, Z., Gao, Y., Miyauchi, M., Cortés, E., Maier, S. A., & Liu, M.
J. Am. Chem. Soc. 144, 3039–3049 (2022). https://doi.org/10.1021/jacs.1c11253

47. Electric metal contacts to monolayer blue phosphorus: electronic and chemical properties
Ou, P., Lan, G., Chen, Y., Li, X.-Y., Zhou, X., Chen, C., Meng, F., & Song, J.
Appl. Surf. Sci. 601, 154206 (2022). https://doi.org/10.1016/j.apsusc.2022.154206

46. A single-atom library for guided monometallic and concentration-complex multimetallic designs
Han, L., Cheng, H., Liu, W., Li, H., Ou, P., Lin, R., Wang, H.-T., Pao, C.-W., Head, A. R., Wang, C.-H., Tong, X., Sun, C.-J., Pong, W.-F., Luo, J., Zheng, J.-C., & Xin, H. L.
Nat. Mater. 21, 681–688 (2022). https://doi.org/10.1038/s41563-022-01252-y

45. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation
Han, L., Ou, P., Liu, W., Wang, X., Wang, H.-T., Zhang, R., Pao, C.-W., Liu, X., Pong, W.-F., Song, J., Zhuang, Z., Mirkin, M. V., Luo, J., & Xin, H. L.
Sci. Adv. 8, eabm3779 (2022). https://doi.org/10.1126/sciadv.abm3779

44. High carbon utilization in CO2 reduction to multicarbon products in acidic media
Xie, Y., Ou, P., Wang, X., Xu, Z., Li, Y. C., Wang, Z., Huang, J. E., Wicks, J., McCallum, C., Wang, N., Wang, Y., Chen, T., Lo, B. T. W., Sinton, D., Yu, J. C., Wang, Y., & Sargent, E. H.
Nat. Catal. 5, 564–570 (2022). https://doi.org/10.1038/s41929-022-00788-1

43. Abundant (110) facets on PdCu3 alloy promote electrochemical conversion of CO2 to CO
Dong, J., Cheng, Y., Li, Y., Peng, X., Zhang, R., Wang, H.-T., Wang, C., Li, X.-Y., Ou, P., Pao, C.-W., Han, L., Pong, W.-F., Lin, Z., Luo, J., & Xin, H. L.
ACS Appl. Mater. Interfaces 14, 41969–41977 (2022). https://doi.org/10.1021/acsami.2c09615

42. Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn–CO2 battery
Han, L., Peng, X., Wang, H.-T., Ou, P., Mi, Y., Pao, C.-W., Zhou, J., Wang, J., Liu, X., Pong, W.-F., Song, J., Lin, Z., Luo, J., & Xin, H. L.
Proc. Natl. Acad. Sci. U.S.A. 119, e2207326119 (2022). https://doi.org/10.1073/pnas.2207326119

2021

41. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis
Han, L., Ren, Z., Ou, P., Cheng, H., Rui, N., Lin, L., Liu, X., Zhuo, L., Song, J., Sun, J., Luo, J., & Xin, H. L.
Angew. Chem. Int. Ed. 60, 345–350 (2021). https://doi.org/10.1002/anie.202010159

40. Negative Poisson’s ratio in graphene Miura origami
Meng, F., Chen, S., Zhang, W., Ou, P., Zhang, J., Chen, C., & Song, J.
Mech. Mater. 155, 103774 (2021). https://doi.org/10.1016/j.mechmat.2021.103774

39. A microfluidic field-effect transistor biosensor with rolled-up indium nitride microtubes
Song, P., Fu, H., Wang, Y., Chen, C., Ou, P., Rashid, R. T., Duan, S., Song, J., Mi, Z., & Liu, X.
Biosens. Bioelectron. 190, 113264 (2021). https://doi.org/10.1016/j.bios.2021.113264

38. Gold-in-copper at low CO coverage enables efficient electromethanation of CO2
Wang, X., Ou, P., Wicks, J., Xie, Y., Wang, Y., Li, J., Tam, J., Ren, D., Howe, J. Y., Wang, Z., Ozden, A., Finfrock, Y. Z., Xu, Y., Li, Y., Rasouli, A. S., Bertens, K., Ip, A. H., Graetzel, M., Sinton, D., & Sargent, E. H.
Nat. Commun. 12, 3387 (2021). https://doi.org/10.1038/s41467-021-23699-4

37. Atomistic and continuum modeling of 3D graphene honeycombs under uniaxial in-plane compression
Chen, Y., Meng, F., Bie, X., Ou, P., & Song, J.
Comput. Mater. Sci. 197, 110646 (2021). https://doi.org/10.1016/j.commatsci.2021.110646

36. Gold adparticles on silver combine low overpotential and high selectivity in electrochemical CO₂ conversion
Ozden, A., Liu, Y., Dinh, C.-T., Li, J., Ou, P., Arquer, F. P. G., Sargent, E. H., & Sinton, D.
ACS Appl. Energy Mater. 4, 7504–7512 (2021). https://doi.org/10.1021/acsaem.1c01577

35. Boride-derived oxygen-evolution catalysts
Wang, N., Xu, A., Ou, P., Hung, S.-F., Ozden, A., Lu, Y.-R., Abed, J., Wang, Z., Yan, Y., Sun, M.-J., Xia, Y., Han, M., Han, J., Yao, K., Wu, F.-Y., Chen, P.-H., Vomiero, A., Seifitokaldani, X., Sinton, D., Sargent, E. H., & Liang, H.
Nat. Commun. 12, 6089 (2021). https://doi.org/10.1038/s41467-021-26307-7

2020–2015

34. Highly efficient binary copper–iron catalyst for photoelectrochemical carbon dioxide reduction toward methane
Zhou, B., Ou, P., Pant, N., Cheng, S., Vanka, S., Chu, S., Rashid, R. T., Botton, G., Song, J., & Mi, Z.
Proc. Natl. Acad. Sci. U.S.A. 117, 1330–1338 (2020). https://doi.org/10.1073/pnas.1911159117

33. Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators
Li, B., Wei, Y., Meng, F., Ou, P., Chen, Y., Che, L., Chen, C., & Song, J.
Superlattices Microstruct. 139, 106420 (2020). https://doi.org/10.1016/j.spmi.2020.106420

32. A complete computational route to predict reduction of thermal conductivities of complex oxide ceramics by doping: A case study of La2Zr2O7
Lan, G., Ou, P., Chen, C., & Song, J.
J. Alloys Compd. 826, 154224 (2020). https://doi.org/10.1016/j.jallcom.2020.154224

31. Controlling the null photonic gap and zero refractive index in photonic superlattices with temperature-controllable-refractive-index materials
Wu, Y., Ou, P., Zhang, L., Lin, Y., & Yang, J.
J. Opt. Soc. Am. B 37, 1008–1020 (2020). https://doi.org/10.1364/JOSAB.37.001008

30. Synthesis of praseodymium- and molybdenum-sulfide nanoparticles for dye-photodegradation and near-infrared deep-tissue imaging
Wu, Y., Ou, P., Song, J., Zhang, L., Lin, Y., Song, P., & Xu, J.
Mater. Res. Express 7, 036203 (2020). https://doi.org/10.1088/2053-1591/ab8160

29. Interface engineering in CeO2 (111) facets decorated with CdSe quantum dots for photocatalytic hydrogen evolution
Ma, Y., Ou, P., Wang, Z., Zhu, A., Lu, L., Zhang, Y., Zeng, W., Song, J., & Pan, J.
J. Colloid Interface Sci. 579, 707–713 (2020). https://doi.org/10.1016/j.jcis.2020.06.027

28. Decoupling strategy for enhanced syngas generation from photoelectrochemical CO2 reduction
hu, S., Ou, P., Rashid, R. T., Ghamari, P., Wang, R., Tran, H. N., Zhao, S., Zhang, H., Song, J., & Mi, Z.
iScience 23, 101380 (2020). https://doi.org/10.1016/j.isci.2020.101380

27. Electrosynthesis of ammonia using porous bimetallic Pd–Ag nanocatalysts in liquid- and gas-phase systems
Nazemi, M., Ou, P., Alabbady, A., Soule, L., Liu, A., Song, J., Sulchek, T. A., Liu, M., & El-Sayed, M. A.
ACS Catal. 10, 10197–10206 (2020). https://doi.org/10.1021/acscatal.0c02680

26. Mineralogical phase transformation of Fe containing sphalerite at acidic environments in the presence of Cu2+
Zhang, Y., Zhao, H., Meng, X., Ou, P., Lv, X., Zhang, L., Liu, L., Chen, F., & Qiu, G.
J. Hazard. Mater. 403, 124058 (2020). https://doi.org/10.1016/j.jhazmat.2020.124058

25. Basal plane activation in monolayer MoTe2 for hydrogen evolution reaction via phase boundaries
Chen, Y., Ou, P., Bie, X., & Song, J.
J. Mater. Chem. A 8, 19522–19532 (2020). https://doi.org/10.1039/D0TA06165D

24. Few-atomic-layers iron for hydrogen evolution from water by photoelectrocatalysis
Zhou, B., Ou, P., Rashid, R. T., Vanka, S., Sun, K., Yao, L., Sun, H., Song, J., & Mi, Z.
iScience 23, 101587 (2020). https://doi.org/10.1016/j.isci.2020.101587

23. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis
Han, L., Hou, M., Ou, P., Cheng, H., Ren, Z., Liang, Z., Boscoboinik, J. A., Hunt, A., Waluyo, I., Zhang, S., Zhuo, L., Song, J., Liu, X., Luo, J., & Xin, H. L.
ACS Catal. 10, 509–516 (2020). https://doi.org/10.1021/acscatal.0c04102

22. Superior sensing properties of black phosphorus as gas sensors: A case study on the volatile organic compounds

Ou, P., Song, P., Liu, X., & Song, J.
Adv. Theory Simul. 2, 1800103 (2019). https://doi.org/10.1002/adts.201800103

21. Structural evolution of oxygen on the surface of TiAlN: Ab initio molecular dynamics simulations
Guo, F., Wang, J., Du, Y., Holec, D., Ou, P., Zhou, H., Chen, L., & Kong, Y.
Appl. Surf. Sci. 470, 520–525 (2019). https://doi.org/10.1016/j.apsusc.2018.12.254

20. Effects of material heterogeneity on self-rolling of strained membranes
Chen, C., Song, P., Meng, F., Ou, P., Lan, G., Liu, X., & Song, J.
Extreme Mech. Lett. 29, 100451 (2019). https://doi.org/10.1016/j.eml.2019.100451

19. Effect of indium doping on motions of a-prismatic edge dislocations in wurtzite gallium nitride
Chen, C., Meng, F., Ou, P., Lan, G., Li, B., Chen, H., Qiu, Q., & Song, J.
J. Phys. Condens. Matter 31, 315701 (2019). https://doi.org/10.1088/1361-648X/ab1bf3

18. Catalytic mechanism of silver in the oxidative dissolution process of chalcopyrite: Experiment and DFT calculation
Zhao, H., Zhang, Y., Sun, M., Ou, P., Zhang, Y., Liao, R., & Qiu, G.
Hydrometallurgy 187, 18–29 (2019). https://doi.org/10.1016/j.hydromet.2019.05.015

17. Reduction of Fermi level pinning at Cu–BP interfaces by atomic passivation
Ou, P., Zhou, X., Chen, C., Meng, F., Chen, Y., & Song, J.
Nanoscale 11, 11569–11576 (2019). https://doi.org/10.1039/C8NR10270H

16. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation
Ou, P., Zhou, X., Meng, F., Chen, C., Chen, Y., & Song, J.
Nanoscale 11, 13600–13611 (2019). https://doi.org/10.1039/C9NR02586C

15. Vacancy-assisted core transformation and mobility modulation of a-type edge dislocations in wurtzite GaN
Chen, C., Meng, F., Chen, H., Ou, P., Lan, G., Li, B., Qiu, Q., & Song, J.
J. Phys. D Appl. Phys. 52, 495301 (2019). https://doi.org/10.1088/1361-6463/ab3f78

14. Quick suppression of vibration of robot via hybrid input shaping control strategy
Wei, Y., Li, B., Zhang, Q., & Ou, P.
J. Northwest. Polytech. Univ. 37, 636–642 (2019). https://doi.org/10.1051/jnwpu/20193730636

13. Hybrid input shaping control scheme for reducing vibration of robot based on multi-mode control
Wei, Y.-l., Li, B., Ou, P., & Zhang, Q.
J. Cent. South Univ. 26, 1649–1660 (2019). https://doi.org/10.1007/s11771-019-4119-2

12. Simultaneous enhancement of near-infrared emission and dye photodegradation in a racemic aspartic acid compound via metal-ion modification
Wu, Y., Ou, P., Fronczek, F. R., Song, J., Lin, Y., Wen, H.-M., & Xu, J.
ACS Omega 4, 19136–19144 (2019). https://doi.org/10.1021/acsomega.9b02434

11. Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles
Fu, H., Ou, P., Zhu, J., Song, P., & Yang, J.
ACS Appl. Nano Mater. 2, 7626–7636 (2019). https://doi.org/10.1021/acsanm.9b01717

10. Controllable phase stabilities in transition metal dichalcogenides through curvature engineering: First-principles calculations and continuum prediction

Ouyang, B., Ou, P., & Song, J.
Adv. Theory Simul. 1, 1800003 (2018). https://doi.org/10.1002/adts.201800003

9. Wafer-scale synthesis of monolayer WSe2: A multi-functional photocatalyst for efficient overall pure water splitting
Wang, Y., Zhao, S., Wang, Y., Laleyan, D. A., Wu, Y., Ouyang, B., Ou, P., Song, J., & Mi, Z.
Nano Energy 51, 54–60 (2018). https://doi.org/10.1016/j.nanoen.2018.06.044

8. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface
Chu, S., Ou, P., Ghamari, P., Vanka, S., Zhou, B., Shih, I., Song, J., & Mi, Z.
J. Am. Chem. Soc. 140, 7869–7877 (2018). https://doi.org/10.1021/jacs.8b03067

7. Rolled-up SiOx/SiNx microtubes with an enhanced quality factor for sensitive solvent sensing
Song, P., Chen, C., Qu, J., Ou, P., Dastjerdi, M. H. T., Mi, Z., Song, J., & Liu, X.
Nanotechnology 29, 415501 (2018). https://doi.org/10.1088/1361-6528/aad0b1

6. Effect of topological patterning on self-rolling of nanomembranes
Chen, C., Song, P., Meng, F., Ou, P., Liu, X., & Song, J.
Nanotechnology 29, 345301 (2018). https://doi.org/10.1088/1361-6528/aac8fe

5. Polycyclic aromatic hydrocarbons adsorption onto graphene: A DFT and AIMD study
Li, B., Ou, P., Wei, Y., Zhang, X., & Song, J.
Materials 11, 726 (2018). https://doi.org/10.3390/ma11050726

4. Predictive modeling of misfit dislocation induced strain relaxation effect on self-rolling of strain-engineered nanomembranes
Chen, C., Song, P., Meng, F., Ou, P., Liu, X., & Song, J.
Appl. Phys. Lett. 113, 112104 (2018). https://doi.org/10.1063/1.5052346

3. Phase engineering of MoS2 through GaN/AlN substrate coupling and electron doping
Ouyang, B., Ou, P., Wang, Y., Mi, Z., & Song, J.
Phys. Chem. Chem. Phys. 18, 33351–33356 (2016). https://doi.org/10.1039/C6CP05404H

2. Thermodynamic modeling of the Co–Hf system supported by key experiments and first-principles calculations
Lu, X., Liu, S., Cheng, K., Tang, Y., Ou, P., Nash, P., Sundman, B., Du, Y., & Zheng, F.
Thermochim. Acta 608, 49–58 (2015). https://doi.org/10.1016/j.tca.2015.05.015

1. A first-principles study of structure, elasticity and thermal decomposition of Ti1–xTMxN alloys (TM = Y, Zr, Nb, Hf, and Ta)
Ou, P., Wang, J., Shang, S., Chen, L., Du, Y., Liu, Z.-K., & Zheng, F.
Surf. Coat. Technol. 264, 41–48 (2015). https://doi.org/10.1016/j.surfcoat.2015.01.045